
J Glob Optim (2007) 38:249–264
DOI 10.1007/s10898-006-9076-2

GASUB: finding global optima to discrete location
problems by a genetic-like algorithm

Blas Pelegrín · Juani L. Redondo ·
Pascual Fernández · Inmaculada García ·
Pilar M. Ortigosa

Received: 30 December 2005 / Accepted: 29 July 2006 / Published online: 22 November 2006
© Springer Science+Business Media B.V. 2006

Abstract In many discrete location problems, a given number s of facility locations
must be selected from a set of m potential locations, so as to optimize a predeter-
mined fitness function. Most of such problems can be formulated as integer linear
optimization problems, but the standard optimizers only are able to find one global
optimum. We propose a new genetic-like algorithm, GASUB, which is able to find a
predetermined number of global optima, if they exist, for a variety of discrete location
problems. In this paper, a performance evaluation of GASUB in terms of its effective-
ness (for finding optimal solutions) and efficiency (computational cost) is carried out.
GASUB is also compared to MSH, a multi-start substitution method widely used for
location problems. Computational experiments with three types of discrete location
problems show that GASUB obtains better solutions than MSH. Furthermore, the
proposed algorithm finds global optima in all tested problems, which is shown by
solving those problems by Xpress-MP, an integer linear programing optimizer (21).
Results from testing GASUB with a set of known test problems are also provided.

Keywords Combinatorial optimization · Discrete location problems · Stochastic
algorithms · Multimodal genetic algorithms

B. Pelegrín (B)· P. Fernández
Department of Statistics and Operational Research,
University of Murcia, Murcia, Spain,
e-mail: pelegrin@um.es

J. L. Redondo · I. García · P. M. Ortigosa
Department of Computer Architecture and Electronics,
University of Almería, Almeria, Spain,
e-mail: juani@ace.ual.es

P. Fernández
e-mail: pfdez@um.es

I. García
e-mail: inma@ace.ual.es

P. M. Ortigosa
e-mail: pilar@ace.ual.es

250 J Glob Optim (2007) 38:249–264

1 Introduction

In many combinatorial optimization problems one has to select s objects in a set of m
of such objects, s < m, so that a given function, whose value depends on the selected
objects, will be optimized. This is the case of a wide class of discrete location problems
where decision makers have to choose s locations for new facilities in a set of m
potential facility sites in order to serve a set of customers, which indeed are aggre-
gated in a finite number of demand points (see (1)). Several types of location models
have been developed to help decision makers in a variety of situations. These models
can be classified in two big groups: non-competitive models and competitive models,
depending on whether a single or multiples players in the marked are considered. A
detailed taxonomy can be found in the survey papers (2–4).

In a non-competitive situation, usually the objective is the minimization of
transportation cost, which is due to the interaction between customers and facilities.
The most common method for the allocation of demand in this setting is that each cus-
tomer will be served by its closest facility. This way, the transportation cost is minimized
for each fixed set of new facilities. An outstanding problem in this group is known
as the s-MEDIAN problem, which frequently appears in many distribution systems
(see (5,6)). In a competitive situation, firms compete for the customers, and the usual
objectives are the maximization of market share and the maximization of profit. The
objective function is determined by using some facility choice rule, which depends on
customer behavior. If customers are supposed to buy at the cheapest facility, strategic
decisions on location and price have to be made. Firms normally use either a mill price
policy (the seller sets a factory price, equal for all the customers in the market, and the
buyer takes care of carriage) or a delivered price policy (the seller charges a specific
price in each market area, which includes the freight cost, and takes care of trans-
port). A popular problem under mill pricing is MAXCAP (see (7)). Under delivered
pricing, there exist equilibrium prices that are determined by the facilities location
(see (8–10)), thus the location-price problem becomes a location problem when firms
charge equilibrium prices. Some vertex-optimality and location equilibrium results on
a network when each firm opens only one facility are shown in (10,11). However, the
resultant location problem for the entering firm when it opens more than one facility,
to our knowledge, has only been studied in (12), and it will be referred here as the
MAXPROFIT problem. Other patronizing behavior of customer takes into account
facility characteristics as it happens with Huff-like based models (see (13,14)).

Finding more than one global optimum is of great interest in real applications
of the above mentioned models. Thus, decision makers can take into account other
location criteria when they are offered several alternatives which optimize the corres-
ponding objective function. Many of these problems can be formulated as Integer
Linear Programs (ILP), but the standard ILP software (e.g., Xpress-MP, CPLEX,
. . .) generates only one global optimum. The aim of this paper is to propose a multi-
modal genetic algorithm, GASUB, which is able to find a predetermined number
of global optima for such problems, if they exist. The new algorithm is related to a
previous algorithm given in (15) which was used to solve continuous problems. We
have selected three discrete location problems, which are formulated as ILP in the
same framework, in order to show that GASUB is able to find more than one global
optimum. This algorithm is also compared with the multi-start substitution heuristic,
MSH, a procedure widely used for many combinatorial location problems (see (5)).
This paper is organized as follows. In Sect. 2, the location problems together with its

J Glob Optim (2007) 38:249–264 251

ILP formulations are described. In Sect. 3, a detailed description of the new algorithm
is provided. Computational results are shown and analysed in Sect. 4, where solutions
for a set of test problems are found by an standard optimizer (Xpress-MP), GASUB
and MSH. The proposed algorithm has also been evaluated using two additional sets
of known test problems. Finally, some conclusions and future lines of research are
mentioned in Sect. 5.

2 The discrete location problems

We will consider the s-MEDIAN, MAXCAP, and MAXPROFIT problems, where
locations for a set of s new facilities owned by the same company have to be deter-
mined in order to optimize the corresponding objective function. The common ingre-
dients to these problems are: a set of m potential sites for the new facilities, a set of n
demand points, a matrix of distances between demand points and potential sites, and
a fixed and known demand at each demand point. The differences between them are
related to the existence of pre-existing facilities or the price policy when competition
is concerned. A characteristic of these problems is that customers are optimally served
by its closest facility for any selection of the new facilities. In the following we present
the standard procedures to deal with these problems.

2.1 Exact algorithms

The only algorithms developed to find optimal solutions are based in their formu-
lations as ILP. In order to formulate the three problems, we will use the following
notation when necessary :

i, I = 1, 2, . . . , n Index and collection of demand points
j, J = 1, 2, . . . , m Index and potential sites for facility location
k, K = 1, 2, . . . , q Index and pre-existing facility locations
wi Demand (or buying power) at point i
dij Distance between demand point i and point j
Di = min{dik : k ∈ K} Distance from demand point i to the closest

pre-existing facility
N<

i = {
j ∈ J : dij < Di

}
Collection of potential locations for servers that
are closer to point i than the closest pre-existing
facility

N=
i = {

j ∈ J : dij = Di
}

Collection of potential locations for servers that
are at the same distance to point i as the
closest pre-existing facility

I∗ = {i ∈ I : N<
i ∪ N=

i �= ∅} Collection of demand points that have at least
one potential location for server closer than or at
the same distance than the pre-existing facilities

t Unit transportation cost
pprod Marginal production cost
pmin Minimum selling price at the facility door

In the s-MEDIAN problem, there is no pre-existing facility in the market (K = ∅)
and the objective is to minimize total transportation cost between demand points and
their closest facilities. The following decision variables are defined:

252 J Glob Optim (2007) 38:249–264

yj =
{

1, if a new facility is opened in j,
0, otherwise,

xij = proportion of demand at i served from site j.

Then the problem is formulated as follows:

(P1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑

i∈I

∑

j∈J

twidijxij

s.t.
∑

j∈J

xij = 1, i ∈ I

xij ≤ yj, i ∈ I, j ∈ J
∑

j∈J

yj = s

xij ≥ 0
yj ∈ {0, 1}.

In the MAXCAP problem, there already exist some competing pre-existing facili-
ties. Customer pays for transportation and buys at its closest facility. If a new facility
and a pre-existing facility are the closest to a demand point i, then demand at i is
divided so that a fixed proportion θi of customers buy at the new closest facilities,
0 ≤ θi ≤ 1. The following decision variables are defined:

yj =
{

1, if a new facility is opened in j,
0, otherwise,

xi =
{

1, if the new facilities capture demand point i,
0, otherwise,

zi =
{

1, if demand point i is divided,
0, otherwise.

then the problem is formulated as follows:

(P2)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
∑

i∈I

wixi +
∑

i∈I

θiwizi

s.t. xi ≤
∑

j∈N<
i

yj, i ∈ I∗

zi ≤
∑

j∈N=
i

yj, i ∈ I∗

xi + zi ≤ 1, i ∈ I∗
∑

j∈J

yj = s

xi ≥ 0, zi ≥ 0
yj ∈ {0, 1}.

In the MAXPROFIT problem, facilities take charge of transportation and deliver
the product to customers. Each facility offers a specific price at each demand point,
which has to be greater or equal than the minimum selling price plus the transpor-
tation cost. Let pnet = pmin − pprod ≥ 0, where pmin and pprod are supposed not to
depend on site location. As result of price competition, the optimal price a new facility
j can offer at demand point i is the equilibrium price, which is given by pmin + tDi
if dij ≤ Di (otherwise no demand from i is captured by facility j). With equilibrium

J Glob Optim (2007) 38:249–264 253

prices, only the closest facility to a demand point i can offer the lowest price in i. Then,
the same rule as in MAXCAP is used for tie breaking when two or more facilities are
the closest to a demand point. The following decision variables are defined:

yj =
{

1, if a new facility is opened in j,
0, otherwise,

xij = proportion of demand at i served from site j,

zi =
{

1, if demand point i is divided,
0, otherwise

then the problem is formulated as follows:

(P3)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
∑

i∈I∗

∑

j∈N<
i

[pnet + t(Di − dij)]wixij + pnet
∑

i∈I∗
θiwizi

s.t.
∑

j∈N<
i

xij + zi ≤ 1, i ∈ I∗

xij ≤ yj, i ∈ I∗, j ∈ N<
i

zi ≤
∑

j∈N=
i

yj, i ∈ I∗

∑

j∈J

yj = s

xij ≥ 0, zi ≥ 0
yj ∈ {0, 1}.

Problems (P1), (P2), and (P3) can be exactly solved by standard integer linear
programing optimizers, but only for problems of moderated size, which is due to
the optimizer cannot manage the corresponding matrices when the cardinalities of I
and/or J are very large. In fact, (P1) and (P2) have been proved to be NP-Hard (see
(16,17)) and (P3) is also NP-Hard since it becomes (P2) by taking pnet = 1, t = 0 and
xi = ∑

j∈N<
i

xij.

2.2 Heuristic algorithms

Due to their complexity, some heuristic solution techniques have been developed
in order to find nearly optimal solutions to large-scale problems with a reasonable
computational effort. For finding good solutions to these problems, and many other
combinatorial optimization problems, they are formulated as follows:

max{�(S) : |S| = s, S ⊂ J}.

Then an important task is the evaluation of the objective function for each possible
set S.

Given S ⊂ J, we denote by di(S) the distance between the demand point i and the
closest location in S, di(S) = min{dij : j ∈ S}. If we consider the sets I1

S = {i : di(S)<Di}
and I2

S = {i : di(S) = Di}, then the objective functions of the mentioned location pro-
blems are as follows:

254 J Glob Optim (2007) 38:249–264

Fig. 1 Structure of MSH algorithm

s − MEDIAN : �1(S) = −
∑

i∈I

widi(S),

MAXCAP : �2(S) =
∑

i∈I1
S

wi +
∑

i∈I2
S

θiwi,

MAXPROFIT : �3(S) = pnet

⎛

⎜
⎝

∑

i∈I1
S

wi +
∑

i∈I2
S

θiwi

⎞

⎟
⎠ + t

∑

i∈I1
S

(Di − di(S))wi.

The most popular heuristic to solve this type of problem is MSH, which is a multistarting
facility-exchange procedure that attempts to improve the objective function value at
each iteration. The structure of this algorithm is shown in Fig. 1, where the operator
mutate(S) replaces one facility in S by one facility in J \ S following a predetermined
order. This procedure ends when all possible exchanges have been done for a given S
without improving the objective function. There also exist other more sophisticated
heuristics (see for instance (18–20)), but most of them are specific for each type of
problem and are not considered here.

3 The GASUB algorithm

In this section the basic concepts, the algorithm, and the setting of the parameters are
outlined.

3.1 Problem encoding

A point (individual in terms of genetic algorithms) consists of a single string that is a
collection of m bits. The position of a bit in the string coincides with the index of the
associated facility. Because of the set S of selected facilities is predetermined for every

J Glob Optim (2007) 38:249–264 255

Fig. 2 Example of chromosome

problem, the number of bits to 1 value must be fixed to the number of new facilities
(cardinal of S). We must consider this constraint when generating any search point.

Figure 2 shows an example of a solution to a problem where we have to select four
new locations from 16 possible locations. The solution or chromosome has four genes
to 1 value and 12 to 0. In this example, genes set to 1 value are at positions 2, 6, 9, and
15. It means that the chosen facilities are those with these identifiers.

3.2 Basic concepts

A key notion in GASUB is that of a subpopulation. A subpopulation would be
equivalent to a single individual, which is defined by a center, a fitness function and
a radius value. The center is a solution and the radius indicates the attraction area of
this subpopulation. This definition assumes a distance defined over the search space.
For our combinatorial problem we define the Hamming distance. As a consequence
of the constraint of the problem, where the number of chosen facilities and hence the
number of bits (or genes) to 1 value is fixed, the Hamming distance between any two
feasible points (individuals) must be always multiple of 2.

The radius of a subpopulation is not arbitrary; it is taken from a list of decreasing
radii that follows a cooling schedule (see Fig. 3). The first element of this list is the
diameter of the search space. If the radius of a subpopulation is the ith element of the
list, then the level of the subpopulation is said to be i. Given the largest radius and
the smallest one (r1 and rlevels, respectively) the radii in the list are expressed by the
exponential function:

ri = r1

(
rlevels

r1

) i−1
levels−1

, (i = 1, . . . , levels).

The parameter levels indicates the maximal number of levels in the algorithm, i.e.,
the number of different ‘cooling’ stages. Every level i (i.e., for levels from [1, lev-
els]) has a radius value (ri) and two maxima on the number of function evaluations
(f.e.) namely newi (maximum f.e. allowed when creating new subpopulations) and ni
(maximum f.e. allowed when mutating individuals).

Fig. 3 Radius values for the
levels based on an
exponentially decreasing
function

256 J Glob Optim (2007) 38:249–264

During the optimization process, a list of subpopulations is kept by GASUB and
this subp—list defines the whole population.

3.3 Input parameters

In GASUB, the most important parameters are those defined at each level: the radii
(ri) and the numbers of function evaluations for subpopulations creation (newi) and
optimization (ni). These parameters are computed from some user-given parameters
that are easier to understand:

levals: The maximal number of function evaluations the user allows for the whole
optimization process. It could be called as Whole Budget. Note that the actual
number of function evaluations may be less than this value.

levels: The maximum number of levels, i.e. the number of cooling stages.
max_subp_num: The maximum length of the subp − list.
rlevels: The radius associated with the maximum level, i.e. levels.

3.4 The Algorithm

The GASUB algorithm has the following structure:

Begin gasub
Initializing population
Mutation(n1)
for i = 1 to levels

Determine ri, newi, ni
Generation and crossover(newi/length(subp_list))
Selection(ri, max_subp_num)
Mutation(ni/max_subp_num)
Selection(ri, max_subp_num)

end for
End gasub

In the following, the main procedures of the algorithm are described:
Initializing population: A new subpopulation list consisting of a single subpopula-

tion with a random center at first level is created. The center must have as many genes
to 1 value as the number of new facilities are being chosen. The associated radius is the
diameter of the search space. This subpopulation is the first element of the subp_list
and it will be kept during the whole optimization, though its center would be replaced.

Generation and Crossover: For every subpopulation in the subp_list, new random
individuals are generated in its attraction area, and for every pair of new individuals
the objective function is evaluated at the middle of the section connecting the pair
(see Fig. 4). All generated individuals must satisfy the constraint of having a fixed
number of genes to 1 value. If the fitness value of the middle point is better than the
fitness value of the center of the subpopulation, then this individual will be the new
center, keeping the same level value. If the value in the middle point is worse than the
values of the pair, then the members of the pair are inserted in the subp—list. Every
newly inserted subpopulation is assigned the actual level value (i).

As a result of this procedure the subp_list will eventually contains several
subpopulations with different levels (hence different radii). The motivation behind

J Glob Optim (2007) 38:249–264 257

Fig. 4 Generation and crossover

this method is to create subpopulations that are on different ‘hills’ so ensuring that
there is a valley between the new subpopulations.

Selection: This procedure has two mechanisms, the first tries to fuse subpo-
pulations that are too close and the second selects the subpopulations that will be
maintained in the subp − list.

Fuse_subpopulations: If the centers of any pair of subpopulations from the
subp− list are closer to each other than the given radius, the two subpopulations
are fused. The center of the new subpopulation will be the one with the better
function value while the level will be the minimum of the levels of the fused
subpopulations (so the radius will be the largest one).
Select_subpopulations: It deletes subpopulations to reduce the list length to
the given value. Higher level subpopulations are deleted first; therefore subpo-
pulations with larger radii are always kept. For this reason one subpopulation at
level 1 whose radius is equal to the diameter of the search domain always exists,
making it possible to escape from local optima.

Mutation: It applies consecutive mutations to every center of every subpopula-
tion. A mutation means an interchange of one facility, so one gene of the center is
changed from 0 to 1 and other gene is changed from 1 to 0, according to our problem
encoding.
When mutating an individual, if its function value is better than the value of the center,
then this new individual will replace the center. At level i, the maximum number of
consecutive mutations applied to each center is ni/max _subp_num.

Note that in fact, that GASUB may terminate simply because it has executed
all its levels and can be smaller than the input parameter evals. This behavior is

258 J Glob Optim (2007) 38:249–264

qualitatively different from genetic algorithms which typically run until a maximum
number of function evaluations. The number of function evaluations can be reduced
if the number of subpopulations found during the optimization process depends on
the problem and may be smaller than the maximum allowed that is determined by
the input parameter max_subp_num. Thus, the final number of function evaluations
depends on the complexity of the objective function that can determine the number
of subpopulations.

4 Computational experiments

The computational experiments are aimed at evaluating GASUB as multimodal global
optimization algorithm that is able to solve different locations problems (s-MEDIAN,
MAXCAP, and MAXPROFIT). In this way results should demonstrate that GASUB
finds more than a single global optimum, if there are more than one for a particular
problem. In Sect. 4.1 the problems have been previously solved using Xpress-MP in
order to known the exact solution to each problem. Also the algorithm MSH has been
used to compare the efficiency, effectiveness and computational time of both heuris-
tics. All the computational results have been obtained under Linux on a Pentium IV
with 3 GHz CPU and 2GB memory. The algorithms were implemented in C++. Due
to the stochastic nature of MSH and GASUB, every experiment has been executed
10 times with each algorithm and results showed in tables are average values.

As for setting input parameters in GASUB algorithm, several preliminary
experiments varying the input parameters have been done to find a robust parame-
ter setting. From those experiments it could be said that a robust parameter setting
consists of a large enough number of levels (l), a small minimum radius (rl), a suffi-
cient maximum number of subpopulations (M), and a large value of the number of
function evaluations (N). Since the parameter N should be greater when the pro-
blem is harder, the following experimental expression for setting N has been used:
N = 213419, 118 · s−421691, 176 for s ≥ 2, where s is the number of new facilities. The
remaining input parameter were set to rl = 2, l = 10 and M = 10. Taking in account
that the maximal number of subpopulations has been set to 10, the maximal number
of global optima that GASUB is able to find is 10. This maximal number of global
optima has been found by the algorithm for some of the tested problems.

4.1 Comparison of the algorithms

In our computational experiments three sets of points containing 1,046, 1,273, and
1,671 cities in Spain as demand points, and their corresponding populations as demand
have been used. The population of these cities is over 4,000, 3,000, and 2,000 inha-
bitants in each set, respectively. The geographic coordinates and population of each
city was obtained from http://www.terra.es/personal/GPS.2000 and http://www.ine.es,
respectively. Distances were taken as the Euclidean distances between cities and each
city demand was taken proportional to its population. All cities were chosen as loca-
tion candidates (the set J) in all test problems. It is important to remark that results
for other additional problems containing 4,072 demand points have not been included
because Xpress-MP was not able to solve them using the computer mentioned above
(see (22)). However, the heuristic algorithms did not have any problem in solve them
because they have less memory requirements.

J Glob Optim (2007) 38:249–264 259

Table 1 Results for the
s-MEDIAN problem

n 1046 1671

XP GASUB MSH XP GASUB MSH

s T T O T T T O T

2 1525.0 7.4 1 9.0 10032.6 13.0 1 24.4
4 1396.1 32.7 1 41.6 8671.6 58.9 1 121.2
6 661.6 88.2 1 100.4 4198.4 151.1 1 271.8
8 439.0 157.0 1 168.7 2663.6 265.5 2 458.3

10 374.1 234.1 1 258.2 1794.0 403.6 1 715.3

In order to have the same input parameter for computational testing with the
three problems, we have taken pmin = pprod. Then an overall view on the perfor-
mance of MSH and GASUB can be obtained by varying the number of new facilities
(s = 2, 4, 6, 8, 10) and the number of pre-existing facilities (q = 2, 4, 6, 8, 10). All test
problems were optimally solved by using Xpress-MP and their optimal values were
used to evaluate the performance of both heuristics.

The following three Tables 1, 2, and 3 show results obtained for the s-MEDIAN,
MAXCAP, and MAXPROFIT problems, respectively. Each row of a table specifies
the results obtained for a different value of s and q. The results showed in tables are
grouped in two big columns, for the sets of points containing 1,046 and 1,671 cities,
respectively. Results for 1,273 cities are not included in the tables for sake of space.

For each experiment, tables show the computational time required by Xpress-MP
(XP), which always finds a single global optimum. Results showed for GASUB are
the average value of the computational time (T) obtained from ten runs and the aver-
age number of optima (O) found by the algorithm. For problems where the number
of found optima is always one, the corresponding column has been omitted. Due to
the fact that GASUB always found at least a global optimum, the percentage of suc-
cess in finding an optimal solution (100%) is not indicated. For the MSH algorithm,
tables show the average computational time (T) obtained from ten runs and the
percentage of success (S) in finding an optimal solution. This algorithm only finds a
single optimum, so the columns associated have been omitted from tables.

Table 1 shows results for the s-MEDIAN problem. For this problem all the
algorithms found the global optimum and the percentage of success is 100% for every
case. It can be seen that the problem with 1,671 cities is harder and the algorithms
need more time to solve it than for the problem of 1,046 cities.

For a particular problem, results show that Xpress-MP is the most time consumer
while GASUB is the least one. The computational time of MSH are slightly bigger
than the time of GASUB. It can be seen that the computational time for Xpress-MP
decreases as the number of new facilities (s) increases while the time for heuristics
increases with s. Run times of Xpress-MP might be explained by the fact that the
number of variables in this problem decreases as long as the value of s increases. With
respect to the number of optima, it is interesting to remark that GASUB found two
global optima when s = 8 and the number of cities was 1,273 and 1,671.

Table 2 shows results for the MAXCAP problem. It can be seen that the com-
putational time for Xpress-MP has been reduced drastically in such a way that
now is quite smaller than for both heuristics. This is a consequence of the formu-
lation of this problem as ILP. It means that the number of variables is much less
than for the s-MEDIAN problem. The computational times for the heuristics are

260 J Glob Optim (2007) 38:249–264

Table 2 Results for the MAXCAP problem

n 1046 1671

XP GASUB MSH XP GASUB MSH

q s T T O T S T T O T S

2 2 2.1 8.0 1 9.7 90 5.3 13.9 1 29.9 100
4 1.9 34.1 10 32.5 100 4.5 59.9 2 96.9 80
6 1.8 88.0 10 75.1 80 4.4 149.6 2 207.8 30
8 1.8 153.8 10 113.4 100 4.3 260.0 4 317.9 100

10 1.8 237.0 10 126.4 100 4.3 396.3 10 316.9 100

4 2 1.7 7.9 1 9.5 100 5.4 13.9 1 25.3 100
4 1.8 33.4 1 45.8 100 6.0 58.7 1 114.6 80
6 2.0 89.3 1 104.6 90 7.9 150.6 1 263.3 70
8 1.6 156.4 1 160.7 30 5.7 263.8 1 447.4 10

10 2.4 241.5 2 264.2 20 5.9 402.6 2 653.4 10

6 2 2.4 7.9 1 10.3 100 6.2 13.8 1 28.2 100
4 2.5 33.8 1 43.2 100 6.0 60.0 1 125.2 100
6 2.0 90.3 1 106.7 60 9.8 154.3 1 297.9 20
8 2.1 161.7 2 173.1 100 8.7 269.7 1 519.7 100

10 1.9 245.8 2 264.0 100 7.7 410.2 2 745.7 100

8 2 1.5 7.9 1 9.0 100 5.3 13.7 1 26.4 100
4 2.1 33.7 1 40.9 80 5.6 60.0 1 126.4 100
6 1.7 89.9 1 107.9 90 6.3 153.4 1 293.0 60
8 1.6 158.0 2 170.0 70 6.3 270.9 2 449.5 90

10 1.6 246.3 1 259.8 30 6.0 408.8 2 733.0 10

10 2 1.5 7.9 1 8.7 100 4.1 13.8 1 26.5 100
4 1.4 34.3 1 40.5 10 5.3 61.1 1 117.8 100
6 1.7 92.7 1 100.8 80 3.9 154.0 1 272.8 100
8 1.5 162.4 1 176.7 10 4.4 280.3 2 475.8 50

10 1.6 251.8 1 279.9 40 4.9 421.5 1 711.1 70

not so different than times for the s-MEDIAN problem, and they also follow the
same tendency of growing with s. Comparing both heuristics it can be seen that
when the number of optima is not too big, GASUB needs less time than MSH,
though when the number of optima is high (10) then MSH finds a solution in less
time than GASUB. It is interesting to remark that GASUB finds in several cases
more than a single global optima, mainly for the cases with q = 2, where the
algorithm is able to find ten optima. Note that maximum number of optima coin-
cides with the maximum number of subpopulations that has been fixed to 10 in
the experiments. Finally, it must be noticed that though computational times for
MSH are similar to times for GASUB, the values of the percentage of success
are bellow 100% in several cases due to the fact that MSH gets trapped in local
optima.

Table 3 shows results for the MAXPROFIT problem. For this problem, GASUB is
only able to find a single global optimum for each case. The computational times for
GASUB and MSH are similar thought slightly smaller for GASUB. For this problem
MSH always finds the global optimum except for the case q = 4 and s = 10, where
90% of success was reached. Again, the computational times for Xpress-MP decreases
when s increases (with exceptions, not very significant, for q = 10 and 1, 046 nodes;

J Glob Optim (2007) 38:249–264 261

Table 3 Results for the MAXPROFIT problem

n 1046 1671

XP GASUB MSH XP GASUB MSH

q s T T T S T T T S

2 2 568.1 8.0 9.4 100 3268.0 14.1 28.7 100
4 307.2 34.1 42.4 100 2086.2 60.7 123.3 100
6 256.8 91.8 106.4 100 1332.5 155.9 278.4 100
8 207.8 161.9 166.4 100 1052.1 272.0 437.6 100

10 168.5 241.1 255.5 100 978.3 404.3 697.8 100
4 2 65.3 7.9 9.2 100 386.8 13.9 27.4 100

4 60.5 34.3 43.2 100 238.4 61.1 117.0 100
6 56.5 89.3 99.1 100 319.0 154.2 269.3 100
8 43.1 161.3 175.6 100 256.3 267.7 451.1 100

10 29.4 244.4 263.3 90 199.0 412.3 741.2 100
6 2 81.2 8.0 9.0 100 469.6 14.1 26.7 100

4 73.6 34.6 40.5 100 348.8 60.7 119.1 100
6 59.9 90.3 96.9 100 317.2 153.3 274.8 100
8 50.5 160.4 171.1 100 250.2 266.4 463.0 100

10 44.5 245.6 253.9 100 260.5 414.5 709.5 100
8 2 31.7 7.9 9.8 100 177.1 13.9 25.4 100

4 31.1 34.3 42.0 100 166.0 60.9 123.6 100
6 27.5 91.7 96.7 100 160.3 155.9 271.5 100
8 26.0 162.3 174.3 100 170.6 273.1 451.1 100

10 23.0 244.9 253.9 100 122.0 417.1 734.4 100
10 2 28.7 8.0 9.6 100 137.5 13.9 27.7 100

4 24.7 34.1 39.2 100 122.4 60.6 113.7 100
6 27.5 90.9 103.5 100 142.9 153.2 257.8 100
8 24.1 158.2 169.5 100 123.8 267.4 476.0 100

10 28.6 245.1 241.4 100 125.2 406.4 748.2 100

q = 4, 8, 10, and 1, 671 nodes), which is now due to the number of variables of its
formulation as ILP decreases as long as s increases. The opposite happens to the heu-
ristics, in such a way that for smaller values of s the heuristics need less computational
time than Xpress-MP, but for greater values of s the heuristics need more time.

4.2 Testing GASUB with a set of known test problems

After verifying that GASUB obtains 100% of success in finding the global solution for
the previous problems, and that it is also able to find more than one global solution
for problems with have several optima, the following set of experiments are aimed to
test GASUB with a set of known test problems.

These problems are s-MEDIAN problems whose function values for the optimal
solutions are known. In particular we have chosen the Alberta s-MEDIAN test pro-
blems (24) and the 40 Beasley s-MEDIAN test problems (23). This choice has been
determined by the fact that both sets of test problems have several problems with
more than a single global optimum. All problems from the Alberta set are characte-
rized by working with 316 nodes, and the number of facilities to localize (s) varies
from 5 to 100. The problems of the Beasley set have different amount of nodes
(from 100 to 900 nodes) and the number of facilities to localize (s) ranges from 5 to
200. Our experiments have shown that GASUB always succeed in finding the global

262 J Glob Optim (2007) 38:249–264

Table 4 Results of GASUB
for the Alberta s-MEDIAN
problems

s Opt Av(T)

5 1 2.3
10 1 100.4
20 2 413.2
30 2 686.1
40 2 1133.1
50 2 1654.8
60 2 1815.5
70 2 2100.6
80 2 2482.0
90 2 2826.0

100 2 2856.0

Table 5 Results of GASUB for the Beasley s-MEDIAN problems

Problem s Opt Av(T) Problem s Opt Av(T)

1 (100) 5 1 1.8 21 (500) 5 1 18.9
2 (100) 10 2 5.3 22 (500) 10 1 70.8
3 (100) 10 2 5.1 23 (500) 50 2 849.0
4 (100) 20 9 19.9 24 (500) 100 3 1763.8
5 (100) 33 9 45.7 25 (500) 167 6 3445.6

6 (200) 5 1 4.9 26 (600) 5 1 25.3
7 (200) 10 2 12.8 27 (600) 10 1 88.7
8 (200) 20 4 34.6 28 (600) 60 2 1311.0
9 (200) 40 7 96.8 29 (600) 120 1 3509.0
10 (200) 67 10 249.0 30 (600) 200 1 5099.0

11 (300) 5 1 9.4 31 (700) 5 1 31.9
12 (300) 10 1 24.8 32 (700) 10 1 102.4
13 (300) 30 5 214.2 33 (700) 70 2 2237.0
14 (300) 60 9 458.1 34 (700) 140 1 5084.0
15 (300) 100 5 767.6 35 (800) 5 1 38.0

16 (400) 5 1 14.9 36 (800) 10 1 113.7
17 (400) 10 1 50.9 37 (800) 80 1 6843.0
18 (400) 40 4 488.8 38 (900) 5 1 44.9
19 (400) 80 4 994.6 39 (900) 10 1 123.6
20 (400) 133 10 2018.0 40 (900) 90 1 8198.0

solution for all problems from both sets. The results for the Alberta and Beasley sets
of test problems are shown in Tables 4 and 5, respectively. As the values of optimal
function values are public (see http://www.bus.ualberta.ca/eerkut/testproblems/ and
http://people.brun- el.ac.uk/ mastjjb/jeb/orlib/pmedinfo.html), we have not specified
them in our tables.

In Table 4, column s indicates the number of new facilities to localize for the
problem, column Opt shows the number of global optima obtained when solving
the problem, while column Av(T) shows the average computational time in seconds
needed to solve the problem. It can be seen that most of the problems have two
optima, so there are two combinations of new facilities that obtain the optimal objec-
tive function. The computational time increases as s increases (the complexity of the
problem increases).

In Table 5, the column Problem shows the number of the problem and the number
of nodes defined for the problem. It can be seen that for 19 out of 40 problems

J Glob Optim (2007) 38:249–264 263

the number of global optima found by GASUB is greater than 1. In some cases
the number of found global optima was 10, which is limited by the input parameter
max _subp_num, that was set to 10. It means that if the input parameter is changed to a
bigger number, it could be possible that GASUB could find more than ten optima. In
general, it seems that there exits an increment of the number of global optima found
when the number of new facilities increases, in such a way that when s is 5 the number
of global optima is always 1 while this number is higher than 3 when s is greater than
10 and the number of nodes is smaller than 500. When the number of nodes is greater
than 500, GASUB only finds a global optimum for most of the problems. With respect
to the computational time, Table 5 shows that it increases when s and the number of
nodes increase i.e., when the complexity of the problem increases.

5 Conclusions and future research

We have shown some basic discrete location problems which can be solved, exactly and
approximately, by the same type of algorithms. Then we have proposed a genetic-like
heuristic, GASUB, which is able to find a predetermined number of global optima
(parameter max_subp_num) if they exist. This algorithm has been compared with
an optimizer, Xpress-MP, and a well known heuristic used for many location pro-
blems, MSH. For this, 15 instances of s-MEDIAN and 75 instances of both MAXCAP
and MAXPROFIT have been solved by the three algorithms. Computational experi-
ments show that optimal locations can also be obtained by the heuristics. The GASUB
found global optima in all the instances (100% of success) while MSH got trapped in
a local optimum in several cases, mainly when solving the MAXCAP problem (50%
of success). An additional advantage of GASUB is that this algorithm can generate
more than one global optimum (in 27 out of the 75 MAXCAP and 2 out of the 15
s-MEDIAN solved problems), the contrary happens with MSH and Xpress-MP which
obtain only one optimum. This characteristic of GASUB is confirmed by solving the
known Alberta and Beasley s-MEDIAN test problems, for which this algorithm found
several global optima in 28 out of the 55 test problems, obtaining ten global optima
(the maximum allowed) in 2 of them.

With respect to the computational cost, it is interesting to remark the different
behaviors of the algorithms, mainly for the s-MEDIAN and MAXPROFIT problems.
On one hand, the computational time for Xpress-MP decreases when s increases
because the number of variables of their formulation as ILP decreases as long as
s increases; and on the other hand, the computational time for both heuristics increase
significantly when the s value increases, which is explained by the fact that the num-
ber of location combination exponentially increases when the parameter s increases.
These opposite behaviors explain the fact that for some problems Xpress-MP is faster
than the heuristics, and in other cases is the slowest. Anyway, it is remarkable that in
general GASUB always is faster than MSH and it also obtains always all the global
optima.

In short, the proposed algorithm is able to generate a pre-determined number of
global optima to discrete location problems, if they exist; it can solve moderately large
problems; it improves the widely used heuristic MSH; and it can compete with the
optimizer Xpress-MP when the number of facilities to be located is small.

As future research, a parallelization of GASUB will be investigated in order to
reduce computational times when solving large-scale problems.

264 J Glob Optim (2007) 38:249–264

Acknowledgements This research has been supported by the Ministry of Science and Technology
of Spain under the research projects SEJ2005-06273/ECON and TIN2005-00447, in part financed by
the European Regional Development Fund (ERDF). We are very grateful with Dash optimization
for providing a Xpress-MP license for testing.

References

1. Francis, R.L., Lowe, T.J., Tamir, A.: Demand point aggregation for location models. In Drezner
Z., Hamacher, H. (eds.) Facility Location: Application and Theory, pp. 207–232. Springer, Berlin
(2002)

2. Eiselt, H.A., Laporte, G., Thisse, J.F.: Competitive location models: a framework and bibliography.
Transport. Sci. 27 44–54 (1993)

3. Hamacher H.W., Nickel, S.: Classification of location models. Location Sci. 13, 229–242 (1998)
4. ReVelle, C.S., Eiselt, H.A. Location analysis: a synthesis and survey. EJOR 165(1), 1–19 (2005)
5. Daskin, M.S. Network and Discrete location: Models, Algorithms and Applications. Wiley, New

York (1995)
6. Mirchandani, P.B.: The p-median problem and generalizations. In: Mirchandani, P.B. Francis, R.L.

(eds.), Discrete Location Theory, pp. 55–117. Wiley-Interscience, New York (1990)
7. Serra, D., ReVelle, C.: Competitive location in discrete space. In: Drezner, Z. (ed.), Facility

Location: A Survey of Applications and Methods, pp. 367–386. Springer, Berlin (1995)
8. García, M.D., Fernández, P., Pelegrín, B.: On price competition in location-price models with

spatially separated markets. TOP 12(2), 351–374 (2004)
9. Lederer, P. J., Hurter, A.P.: Competition of firms: discriminatory pricing and location. Econome-

trica, 54(3), 623–640 (1986)
10. Lederer, P.J., Thisse, J.F.: Competitive location on networks under delivered pricing. Opera. Res.

Lett. 9(91), 147–153 (1990)
11. Dorta-González, P., Santos-Peñate, D.R., Suárez Vega, R.: Spatial competition in networks with

discriminatory pricing. Pap. Regi. Sci. 84(2), 271–280 (2005)
12. Fernández, P., Pelegrín, B., García, M.D., Peeters, P.: A discrete long-term location-price problem

under the assumption of discriminatory pricing: Formulations and parametric analysis. Eur. J.
Opera. Rese. 2006. DOI 10.1016/j.ejor.2005.03.075

13. Berman, O., Krass, D.: Locating multiple competitive facilities: spatial interaction models with
variable expenditures. Ann. Oper. Res. 11, 197–225 (2002)

14. Suárez-Vega, R., Santos-Peñate, D.R., Dorta-González, P.: Discretization and resolution of the
(r | Xp)-medianoid problem involving quality criteria. TOP 12, 111–134 (2004)

15. Ortigosa, P.M., García, I., Jelasity, M.: Reliability and performance of UEGO, a clustering-based
global optimizer. Jo. Global Optim. 19(3), 265–289 (2001)

16. Cornuejols, G., Fisher, M.L., Nemhauser, G.L.: Locations of bank accounts to optimize float: an
analytical study of exact and approximate algorithms. Manage. Sci. 23, 789–810 (1997)

17. Hakimi, S.L.: On locating new facilities in a competitive environment. Eur. J. Oper. Res. 12,
29–35 (1983)

18. Colomé, R., Serra, D.: Consumer choice and optimal location models : Formulations and heuris-
tics. Pap. Reg. Sci. 80, 439–464 (2001)

19. Moreno, J.A., Roda García, J.L., Marcos, J.M. Moreno-Vega, M. A parallel genetic algorithm for
the discrete p-median problem. Studies Location. Analy. 7, 131–141 (1994)

20. Rosing K.E., Revelle, C.: Heuristic concentration: two stage solution construction. Eur. J. Oper.
Res. 97, 75–86 (1997)

21. Xpress-MP. Dash optimization, 2004
22. Pelegrín, B., Fernández, P., Redondo, J.L., García, I., Ortigosa, P.M.: Solving a competitive facility

location problem by stochastic algorithms. In: Proceedings of the Tenth International Symposium
on Locational Decisions, ISOLDE X, pp 217–218. Sevilla, Spain (2005)

23. Alp, O., Drezner, Z., Erkut, E.: An efficient genetic algorithm for the p-median problem. Ann.
Oper. Res. 122(1), 21–42 (2003)

24. Beasley, J.E.: Or-library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41(11),
1069–1072 (1990)

	GASUB: finding global optima to discrete location problems by a genetic-like algorithm
	Abstract
	Introduction
	The discrete location problems
	Exact algorithms
	Heuristic algorithms
	The GASUB algorithm
	Problem encoding
	Basic concepts
	Input parameters
	The Algorithm
	Computational experiments
	Comparison of the algorithms
	Testing GASUB with a set of known test problems
	Conclusions and future research
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

